- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Alghanayem, Rayan (2)
-
Lin, Shihong (2)
-
Horseman, Thomas (1)
-
Tong, Tiezheng (1)
-
Wang, Ruoyu (1)
-
Westerhoff, Paul (1)
-
Xu, Lonqian (1)
-
Xu, Pei (1)
-
Yao, Yiqun (1)
-
Zhang, Xudong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zero liquid discharge (ZLD) and minimal liquid discharge (MLD) are brine management approaches that aim to reduce the environmental impacts of brine discharge and recover water for reuse. ZLD maximizes water recovery and avoids the needs for brine disposal, but is expensive and energy-intensive. MLD (which reduces the brine volume and recovers some water) has been proposed as a practical and cost-effective alternative to ZLD, but brine disposal is needed. In this Review, we examine the concepts, technologies and industrial applications of ZLD and MLD. These brine management strategies have current and potential applications in the desalination, energy, mining and semiconductor industries, all of which produce large volumes of brine. Brine concentration and crystallization in ZLD and MLD often rely on mechanical vapour compression and thermal crystallizers, which are effective but energy-intensive. Novel engineered systems for brine volume reduction and crystallization are under active development to achieve MLD and/or ZLD. These emerging systems, such as membrane distillation, electrodialytic crystallization and solvent extraction desalination, still face challenges to outcompete mechanical vapour compression and thermal crystallizers, underscoring the critical need to maximize the full potential of reverse osmosis to attain ultrahigh water recovery. Brine valorization has potential to partially offset the cost of ZLD and MLD, provided that resource recovery can be integrated into treatment trains economically and in accordance with regulations.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Wang, Ruoyu; Alghanayem, Rayan; Lin, Shihong (, Environmental Science & Technology)
An official website of the United States government
